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Abstract—This paper presents a deep reinforcement learning
(DRL) framework for adaptive traffic-signal control that jointly
optimizes mobility and environmental performance. A dueling
deep Q-network (DQN) agent is trained on a single four-way
intersection using a dual-factor reward function incorporating
both vehicle waiting time and CO2 emissions. The resulting policy
exhibits structural smoothing of phase transitions—reducing
oscillatory switching without degrading delay performance—and
demonstrates that emission-awareness can serve as a regularizer
for stable policy convergence. The trained agents are then
deployed across a city-scale network modeled on the urban
layout. Inference runs with more than ninety agents confirm real-
time feasibility, achieving stable queue regulation, zero residual
waiting, and high update throughput without centralized coor-
dination. The results indicate that decentralized, emission-aware
DRL control can scale from intersection to city level, offering a
foundation for future eco-adaptive and 6G-V2X-connected urban
traffic management systems.

Index Terms—Deep Reinforcement Learning (DRL), Traffic
Signal Control, SUMO Simulation, Emission-Aware Optimiza-
tion, Smart Mobility, Urban Traffic Networks, Dueling Deep Q-
Network (DQN), 6G-V2X, Digital Twin, Edge Intelligence.

I. INTRODUCTION

URBAN traffic signal control is one of the few operational
levers that can simultaneously influence travel-time ef-

ficiency and environmental externalities at city scale without
physical road reconfiguration or wholesale fleet replacement
[1]. Conventional fixed-time and traffic-actuated controllers
regulate movement through precomputed plans or rule-based
heuristics that react to the local detection. While robust and
interpretable, these controllers optimize mobility proxies such
as saturation, throughput, or queue clearance, but do not adapt
to long-horizon dynamics nor internalize environmental costs
such as stop-induced emissions [2], [3]. As urban mobility
policies evolve from pure congestion mitigation toward joint
congestion-and-emission reduction, signal-control strategies
must become optimization-driven, data-conditioned, and capa-
ble of self-improvement through operation rather than manual
redesign.

Deep reinforcement learning (DRL) provides a natural con-
trol formulation for this class of problems. Traffic dynamics
are inherently non-stationary, strongly coupled across inter-
sections, and governed by delayed effects of control actions.
Unlike rule-based adaptive systems, DRL can directly learn

the value of extended control sequences through interaction
with its environment, eliminating the need for explicit para-
metric modeling of queue evolution [4], [5]. The majority
of existing studies have focused exclusively on mobility
objectives—minimizing delay, queue length, or number of
stops—while environmental performance is typically analyzed
post-hoc rather than embedded into the reward function [6],
[7]. Emission-aware DRL approaches have emerged only
recently.

This article presents a two-stage investigation of DRL-based
traffic control that addresses both mobility and environmental
considerations. In Stage I, a dueling deep Q-network agent
is trained on a single four-way intersection using a dual-
factor reward that penalizes both vehicle waiting time and
modeled CO2 emissions obtained from SUMO’s Handbook
Emission Factors for Road Transport (HBEFA)-based emission
model. In Stage II, the approach is extended to a full urban
network modeled on the city of Cologne, Germany—where
the SUMO simulator itself was originally developed—using a
decentralized multi-agent DRL architecture based on Double-
DQN. For the Cologne deployment, the implemented reward
optimizes delay (negative waiting time) in accordance with
the baseline city-scale methodology, while the emission-aware
component is retained as a design extension supported by
Stage I insights.

The results demonstrate that a delay-optimized city-wide
DRL agent trained under these conditions achieves stable
phase behavior and reduced switching frequency, laying the
groundwork for future inclusion of emissions into network-
level optimization. Overall, the work establishes a foundation
for scalable, emission-aware DRL control and provides a
bridge between microscopic experimentation and city-scale
adaptive traffic management.

The remainder of this paper is organized as follows. Sec-
tion II summarizes the related literature and delineates this
work’s specific contributions. Section III details the DRL
formulations for the junction-level and city-scale setups and
the associated training protocol. Section IV describes the
urban-scale experimental design using the Cologne SUMO
network. Section V presents the results and interpretation.
Section VI outlines potential system-level extensions, and
Section VII discusses engineering implications, limitations,
and the forward roadmap before concluding in Section VIII.
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Fig. 1: System Model for city-wide DRL-powered Traffic Agents

II. RELATED WORK & CONTRIBUTIONS

The application of deep reinforcement learning (DRL) to
adaptive traffic signal control has evolved rapidly in the past
decade. Early studies applied single-agent deep Q-networks
(DQN) to isolated intersections, demonstrating the feasibility
of replacing rule-based control with value-function learning
[8], [10]. Subsequent work introduced actor–critic methods
and multi-agent reinforcement learning (MARL) to capture
inter-intersection dependencies [4], [5]. Frameworks such as
IntelliLight [10] and CoLight [11] showed that multi-agent
coordination, enabled through graph neural network (GNN)
architectures, can yield superior delay performance under non-
stationary traffic conditions.

While these advances primarily target mobility improvement
(e.g., minimizing queue length, i.e., the number of vehicles
present at the traffic junction, or delay), environmental metrics
have only recently entered the optimization loop. Emission-
aware and eco-traffic control approaches often rely on post-
hoc evaluation of emissions or surrogate proxies such as stop
frequency [6], [13]–[16]. Research in [8] and [9] introduced
DRL formulations that incorporate direct emission estimates
from microscopic simulations (e.g., SUMO’s HBEFA model),
highlighting that CO2 reduction can be achieved without
degrading throughput. However, most of these works remain
confined to single-junction or small-network scales due to
scalability and stability constraints.

Beyond DRL, adaptive traffic systems such as SCOOT
and SCATS remain the operational benchmarks for real-
world deployment, relying on rule-based feedback and model-
predictive control (MPC) principles [1]. Although robust, these
systems cannot dynamically adapt to the long-horizon, high-
dimensional dynamics of modern cities.

A. Contributions

This work builds on these foundations and contributes
threefold.

• First, it explicitly incorporates CO2 emissions as a reward
term in the DRL objective for a single four-way inter-
section, revealing how emission-awareness shapes policy
behavior without sacrificing delay performance.

• Second, it scales the trained approach to a real urban
network—the Cologne scenario from SUMO—using a
decentralized Double-DQN framework, thereby validat-
ing the feasibility of multi-agent DRL control at city
scale.

• Third, it introduces diurnal training and shared-memory
mechanisms that enhance robustness across time-varying
traffic conditions and enable transferable policy initial-
ization between intersections.

Together, these advances demonstrate that DRL can move
beyond simulation experiments toward operationally relevant,
emission-conscious urban traffic control.

III. METHODOLOGY

This section presents the detailed control formulation and
training pipeline. We describe the single-junction CO2-aware
setup (Stage I) and the city-scale multi-agent Double-DQN
formulation (Stage II).

A. Process formulation

The proposed system model is presented in Fig. 1. Let I
denote the set of signalized intersections. For each intersection
i ∈ I, agent i observes a local state si, selects an action
ai, and receives a scalar reward ri. The environment evolves
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Fig. 2: Flow of execution for experiments performed.

under SUMO vehicle micro-dynamics and TraCI-based con-
trol injection. Agents act synchronously every fixed number
of simulation steps to avoid phase flicker and allow queue
dynamics to evolve.

B. Stage I: Single-Junction CO2-Aware Agent

The single-junction experiment serves as an interpretable
testbed.

State. The state s comprises:

• lane-wise halting counts normalized to a fixed range;
• current active phase identity;
• elapsed time in the active phase.

Emissions are not placed into state features; they influence
learning solely via the reward.

Action. Actions prescribe temporal control over the active
phase: a discrete set of duration-extension choices (e.g., con-
tinue for additional quanta or switch at earliest safe moment).
SUMO enforces safety through internal clearance timing.

Reward. The instantaneous reward is a normalized convex
combination

r = −
(
λw · Ŵ + λc · Ê

)
, (1)

where Ŵ is normalized total waiting time across ap-
proaches, Ê is normalized instantaneous CO2 emission es-
timated by SUMO’s HBEFA model, and λw + λc = 1,
λw, λc ≥ 0. Normalization ensures comparable scales and
prevents dominance. The convex combination is described
without committing to a specific offline solver to set λ (see
text).

Learner. A Dueling DQN architecture is used at this stage
to improve advantage/value decomposition in the presence of
action redundancy (multiple extension choices with similar
short-term effects). Standard stability techniques are applied:
experience replay, target network hard-updates, Huber loss,
Adam optimizer, gradient clipping, and ε-greedy exploration
with decay.

C. Stage II: City-Scale Double-DQN Agents (Delay Objective)
Following the single-junction stage, the method scales to the

Cologne SUMO network using decentralized agents that opti-
mize delay only. This choice follows the uploaded city-scale
methodology and provides a controlled evaluation of multi-
agent scalability and robustness. Each signalized intersection is
modeled as an independent learning agent that observes local
traffic conditions and selects a phase to minimize network-
wide delay. Agents learn from interaction through trial and
error while the simulator evolves according to realistic vehicle
dynamics. The city-stage formulation implements the Double-
DQN target update described below.

State. For intersection i, the state vector si is the normal-
ized halting count per lane under its control. This minimal
observable mirrors what roadside detectors and local cabinets
typically provide.

Action. At the city scale the action is the
phase index selected from SUMO’s huilt-in
getCompleteRedYellowGreenDefinition function;
this aligns with typical traffic cabinet interfaces and the
provided SUMO network. SUMO enforces legal transitions
and inter-green times.

Reward. The per-step reward is the negative aggregate
waiting time on the lanes controlled by the intersection.

Learning Algorithm: Each agent runs a Double-DQN
variant with an online network Qθ and a target network Qθ̃.
For a sampled transition (s, a, r, s′, d), the target is given by

y = r + γ(1− d)Qθ̃

(
s′, argmax

a′
Qθ(s

′, a′)
)
, (2)

where s denotes the current state, a is the action taken in state
s, r represents the immediate reward received after executing
action a, s′ is the next observed state, d ∈ {0, 1} is the
episode termination flag (with d = 1 indicating that the
episode has ended), and γ ∈ [0, 1] is the discount factor that
controls the contribution of future rewards. The functions Qθ

and Qθ̃ denote the online (evaluation) and target Q-networks,
parameterized by θ and a delayed copy θ̃, respectively.

The Huber loss, L = SmoothL1
(
Qθ(s, a)−y

)
is minimized

and the Adam Optimizer is used to update the online network



4

parameters and stabilize learning. SmoothL1Loss is a hybrid
between the L1 and L2 loss functions, offering the best of
both worlds in terms of gradient behavior. This Double-DQN
formulation helps to reduce overestimation bias in Q-value
updates, thereby improving training stability and convergence.

D. Execution and Cadence

Fig. 2 represents the flow of execution for our experiments.
All agents decide synchronously every 10 simulation steps by
default. Actions from all agents are applied in the same control
instant, producing a city-wide plan update. TraCI mediates
state queries and action injection at 1-second simulation reso-
lution. Our baseline is a Double DQN agent (online and target
networks; target selection via online argmax) with prioritized
action timing.

IV. URBAN-SCALE EXPERIMENTAL DESIGN

This section describes the Stage I and Stage II network
configurations, training protocols, and metrics.

A. SUMO Network and Demand

Fig. 3 shows the fourway junction created in SUMO for
initial expeeriments in Stage I. The experiments in Stage
II use the public Cologne SUMO scenario, shown in Fig.4,
with modifications to emulate higher density where required.
The network preserves authentic lane geometry and signal
phasing. Demand is modeled by origin–destination matrices
that follow hourly multipliers representing diurnal cycles.
Fleet composition includes cars, buses, and trucks to reflect
heterogeneous emission characteristics in the study.

Fig. 3: Single four-way junction for Stage I.

B. Training and Evaluation Protocol

Training proceeds for 100 episodes (default) with check-
pointing of agent weights and replay buffers after each
episode. Each episode simulates a fixed horizon (representative
of multi-hour operation or stitched 24-hour equivalents). We
perform ablations over a number of simulation steps (5, 10,
15, 30), reward variants (mean wait, max queue, pressure),
replay sizes and target update cadence.

Fig. 4: Map of Cologne City in SUMO for Stage II.

For the Cologne network, each signalized intersection is
assigned an independent DRL agent trained in a decentralized
manner, following the Multi-Agent Reinforcement Learning
(MARL) paradigm [5], [11]. The network comprises over 90
active signalized intersections, diurnal demand cycles, and
multi-modal traffic streams. Agents share no explicit commu-
nication during inference but are synchronized by simulation
time via the SUMO–TraCI interface. A shared normalization
buffer stores aggregate statistics of observed states across
agents, ensuring consistent scaling without centralized coordi-
nation. This architecture allows parallel learning and scalable
inference—crucial for city-scale deployment.

V. RESULTS AND INTERPRETATION

Stage I and Stage II results are interpreted with emphasis
on (i) learned structural behaviors, (ii) stability of large–scale
deployment, and (iii) the qualitative effect of including CO2

in the optimization objective at the single–junction stage. The
focus is on what the model learns, how it behaves, and what
the observed outcomes imply about its suitability for scaling.

A. Stage I: CO2-Aware Learning at a Single Intersection

Training on a single four-way junction produced a noisy
but downward learning trend in average waiting time and
queue length across episodes, consistent with value-function
refinement under delayed reward. When CO2 emissions were
included as a second reward term, the controller converged to
policies that:

• preserved delay performance relative to the delay–only
objective at the same junction scale,

• reduced modeled CO2 emissions through suppression of
high–frequency phase oscillation, and

• exhibited smoother and longer green persistence in phases
serving accumulated demand platoons.
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Although the learning curves show stochasticity, the overall
downward drift in waiting time confirms policy improvement
and the regularizing influence of the emission term.

Fig. 5: Decreasing queue length trend for single junction.

Fig. 6: Reward function plot to depict learning of the model.

This joint improvement supports the interpretation that
emission–awareness acts as a structural regularizer on the
learned control policy rather than a mobility tradeoff.

B. Stage II: City-Scale DRL Deployment on Cologne

The trained agents were deployed for inference across
the full network. Simulation executed to completion without
deadlock and terminated with zero residual waiting vehicles,
indicating that the learned policies regulated flow consistently
across the inference horizon. Mean queue length remained
below four vehicles despite continuous vehicle injection,
demonstrating stable throughput under large–scale load.

Table I lists key system–level metrics extracted directly from
the inference log.

TABLE I: Stage II: System-level execution metrics.

Metric Symbol Observed Value

Mean queue length Q̄ ≈ 3.8 veh
Residual waiting Wend 0
Active agents N > 90
Updates per second UPS 56,069
Real-time factor RTF 16.08

Fig. 7: Mean queue length across the whole city-wide network
versus the simulation duration.

Fig. 8: Reward function versus the simulation steps.

All agents engaged successfully, and inference completed in
real time with high computational throughput. The ability to
operate with N > 90 independent agents, while maintaining
bounded queues and stable updates, confirms the operational
tractability of decentralized DRL agent at the urban scale.

C. Interpretive Takeaways

Two conclusions arise from the combination of Stage I and
Stage II evidence:

1) Micro-scale regularization: Emission–aware learning
induces smoother actuation without degrading mobility
performance.

2) Macro-scale tractability: Stable city–wide inference
with bounded queues and zero residual waiting demon-
strates that network-level DRL control is computation-
ally and operationally feasible.

Consistent with the direction observed in prior literature, these
results and their structural properties suggest that learning-
based controllers are positioned to outperform fixed-time
strategies under non-stationary demand regimes, even though
direct quantitative benchmarking is outside the scope of this
study.

VI. SYSTEM-LEVEL EXTENSIONS

The experimental deployment over the Cologne network
establishes a proof of operational feasibility for distributed
DRL control at metropolitan scale. Building upon this foun-
dation, several system-level extensions naturally arise that can
advance both research and deployment readiness.
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A. Multi-Agent Coordination and Scalability

The deployed framework demonstrates that decentralized
inference can scale to N > 90 intersections without cen-
tralized scheduling. However, coordination among agents may
further enhance global performance when traffic interactions
propagate through adjacent corridors. Future work can extend
the current architecture to a paradigm wherein each inter-
section shares low-dimensional latent representations (e.g.,
average inflow or queue gradient) with its neighbors. Such
localized communication would enable agents to align phase
transitions across coordinated corridors while maintaining the
independence that allows real-time inference.

B. Real-Time Inference, Environmental Integration and Edge
Deployment

With an observed real-time factor (RTF) of 16.08 and update
throughput exceeding 56,000 UPS, the present framework
already satisfies soft real-time execution in simulation. Trans-
lating this into a live deployment would require embedding
lightweight inference modules on edge controllers interfaced
with existing adaptive signal hardware. Model compression
through network pruning or quantization may further reduce
latency while preserving learned policy quality. Because in-
ference in a dueling DQN involves only a single forward pass
through a modest feedforward network, edge inference at sub-
50 ms latency per intersection appears technically feasible.

The CO2-aware term introduced at the single-junction stage
serves as a first step toward eco-adaptive traffic control. Future
extensions can integrate on-board diagnostics or roadside
environmental sensors (e.g., particulate or NOx monitors)
to provide real emissions feedback. By closing this loop,
the system could dynamically re-weight the emission term
in the reward according to diurnal or seasonal air-quality
priorities, achieving both traffic efficiency and environmental
compliance.

C. Integration with Digital Twins and 6G-V2X Infrastructure

Given the emerging convergence between vehicular com-
munications and intelligent control, the DRL framework can
be integrated into a city-scale digital twin connected through
6G-V2X interfaces [18], [19]. This would enable continuous
learning using live telemetry streams from connected vehicles
while maintaining safety via shadow-mode deployment. Such
integration allows retraining on evolving demand patterns
without physical disruption, creating a self-improving urban
mobility controller.

TABLE II: Potential System-Level Extension Domains.

Extension Illustrative Benefit

Multi-agent coordination Corridor-level synchronization
Edge deployment Real-time scalability
Environmental integration Eco-adaptive signal control
Digital-twin coupling Continuous online learning

VII. DISCUSSION

A. Engineering and Deployment Implications

The results indicate that DRL can serve as a policy-
synthesis layer rather than a direct actuator. In deployment,
learned plans would pass through safety and legal filters
(minimum green, pedestrian protection, amber compliance,
emergency overrides) before cabinet execution. A digital twin
is a prerequisite for safe pre-deployment training; shadow-
mode operation should precede any real–world actuation. The
absence of central coordination in the learning design simpli-
fies integration with legacy distributed UTC architectures.

B. Limitations

While the reported findings demonstrate the operational
viability of emission-aware deep reinforcement learning for
traffic-signal control, several limitations qualify the interpreta-
tion of results. First, the experiments are conducted within the
SUMO microscopic traffic simulator, which assumes perfect
driver compliance, accurate lane following, and idealized actu-
ation. Real-world intersections are subject to stochastic driver
behavior, sensor noise, and actuation latency, all of which can
affect control stability. Second, the observed CO2 reductions
are limited to the single-junction training environment, where
emissions are estimated using SUMO’s HBEFA-based model.
The city-scale deployment primarily evaluates mobility per-
formance, and real-world emission data would be required
to validate environmental benefits under heterogeneous condi-
tions. Third, the simulation presumes the availability of lane-
level halting detectors and full access to all signal heads
through a centralized interface, assumptions that may not
hold in legacy infrastructure. Finally, the experiments are
based on a Cologne-like traffic network with regulated flows,
meaning that transferability to less-structured or developing
urban contexts remains an open direction that warrants further
study.

C. Roadmap Forward

Future research and engineering efforts should aim to trans-
late these simulation insights into deployable urban mobility
solutions. A practical next step is embedding legal and safety
constraints directly into the DRL action space, ensuring that
every decision adheres to regulatory and physical feasibility
bounds. Replacing modeled CO2 signals with sensor-based or
telematics-derived measurements would allow the system to
optimize genuine externalities rather than simulation proxies.
Hybridization of DRL agents with formal control envelopes,
such as model predictive control (MPC) or Lyapunov-based
stability layers, could provide provable safety guarantees with-
out negating the adaptability of learning-based strategies. Ex-
tensive stress-testing under non-compliance, pedestrian surges,
and adversarial conditions would further improve robustness.
Finally, cross-city generalization can be achieved through few-
shot fine-tuning using shared priors learned from cities with
similar topology or traffic regimes. Together, these directions
form a coherent roadmap toward city-grade, emission-aware
intelligent traffic systems that operate safely, adaptively, and
sustainably in real-world environments.
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VIII. CONCLUSION

This work presented a two–stage DRL framework for traffic
signal control: emission–aware learning at a single junction
and decentralized learning at city scale over the Cologne
network. Stage I showed that CO2 inclusion reshapes actuation
without harming delay. Stage II demonstrated stable city–scale
inference with decentralized agents under diurnal loads. Com-
bined with consistent evidence from prior literature, the ob-
served behaviors suggest that emission–aware DRL policies
are poised to surpass fixed–time strategies in non–stationary
regimes once integrated with real sensing and deployment
guardrails.
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